芝诺悖论(Zenos paradox)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。
悖论学说
这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于存在不动、是一的学说。这些悖论中最著名的两个是:阿基里斯跑不过乌龟和飞矢不动。这些方法可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的机械论的分歧点。
三个例子
追乌龟
阿喀琉斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿喀琉斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!
乌龟 动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。
如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑数学派所代表的毕达哥拉斯的 1-0.999...0思想。然后,他又用这个悖论,嘲笑他的学生芝诺的1-0.999...=0,但1-0.999...0思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的1-0.999...=0,或1-0.999...0思想。
有人解释道:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。
芝诺当然知道阿喀琉斯能够捉住海龟,跑步者肯定也能跑到终点。
类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。
以上初等数学的解决办法,是从结果推往过程的。悖论本身的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函数,而芝诺的解释则采取了离散的时间系统。即无论将时间间隔取得再小,整个时间轴仍是由无限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。
其实这归根到底是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。按照悖论的逻辑,这100/9秒可以无限细分,给我们一种好像永远也过不完的印象。但其实根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为无论时间再短也可无限细分。但其实我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,好像永远无穷无尽。但其实时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,其实加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。
飞矢不动
设想一支飞行的箭。在每一时刻,它位于空间中的一个特定位置。由于时刻无持续时间,箭在每个时刻都没有时间而只能是静止的。鉴于整个运动期间只包含时刻,而每个时刻又只有静止的箭,所以芝诺断定,飞行的箭总是静止的,它不可能在运动。
上述结论也适用于时刻有持续时间的情况。对于这种情况,时刻将是时间的最小单元。假设箭在这样一个时刻中运动了,那么它将在这个时刻的开始和结束位于空间的不同位置。这说明时刻具有一个起点和一个终点,从而至少包含两部分。但这明显与时刻是时间是的最小单元这一前提相矛盾。因此,即使时刻有持续时间,飞行的箭也不可能在运动。总之,飞矢不动。
箭悖论的标准解决方案如下:箭在每个时刻都不动这一事实不能说明它是静止的。运动与时刻里发生什么无关,而是与时刻间发生什么有关。如果一个物体在相邻时刻在相同的位置,那么我们说它是静止的,反之它就是运动的。
游行队伍
首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。
◆◆◆◆观众席A
▲▲▲▲队列B
▼▼▼▼队列C
B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。
◆◆◆◆观众席A
▲▲▲▲队列B……向右移动
▼▼▼▼队列C……向左移动
而此时,对B而言C移动了两个距离单位。也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。
【相关文章】
本文地址:http://www.yesbaike.com/view/24730.html
声明:本文信息为网友自行发布旨在分享与大家阅读学习,文中的观点和立场与本站无关,如对文中内容有异议请联系处理。